Sensory–motor incongruence and reports of ‘pain’

Candy McCabe and her colleagues at Bath, published an interesting paper where they induced incongruence between what one’s arm was doing and what it looked like it was doing. They did this to test a theory that chronic pathological pain syndromes are caused, at least in part, by such an incongruence, which itself stems from cortical reorganisation (changes in the brain’s maps of the body).  Professor Simon Gandevia and I were asked to provide a commentary on it.  We can’t reproduce Candy’s article because of copyright, but you can follow the link Rheumatology 2005;44:509–16.  It would be far better to read it and then read our commentary rather than the other way around.  Check out her other stuff too because some of it really is groovy.


Rheumatology 44 1083-1085

GL Moseley(a) and SC Gandevia(b)
(a) School of Physiotherapy, The University of Sydney
(b) Prince of Wales Medical Research Institute and University of New South Wales, Sydney, Australia

McCabe and colleagues [1] investigate the hypothesis that pain without obvious accompanying tissue damage might be caused by discordance between motor intent and movement [2]. According to that hypothesis, in the same way that motion sickness might result from discordant sensory input (from vestibular apparatus and proprioceptors), pain may result from changes in the cortical representation of somatic input, which falsely signals incongruence between motor intention and movement. That the central nervous system (CNS) detects such incongruence has long been established. The reafference principle [3], whereby an exact copy of the command for movement (the ‘efferent copy’) is subtracted from sensory input about the actual movement (‘reafference’) to yield an error signal (‘exafference’), and the corollary discharge model [4] are early examples. Since then, an impressive amount of research has been undertaken (see Gandevia [5] for review). However, much of this has been concerned with the role that detection of sensory–motor incongruence has in the control of movement and in proprioception, rather than in generation of pain.

Such an alternative focus seems timely. Despite rapid increases in knowledge about the genetics, molecular biology and neurophysiology of pain and the subsequent development of more targeted and effective pharmacological strategies, pain remains a continuing health problem. For example, figures from Europe, the United States and Australia suggest that about 20% of adults report chronic pain [6–8] and available treatments offer little lasting relief [9]. If we are to provide more effective treatment and management for people in pain, hypotheses such as Harris’ are important. A broadened framework for understanding pain is particularly relevant for clinical situations in which pain develops when there is no demonstrable tissue damage.

McCabe and colleagues [1] set out to assess Harris’ proposition about pain generation. They induced false signals of incongruence between motor intention and actual movement (or false ‘exafference’) by placing a mirror or whiteboard barrier between the limbs of healthy subjects while they moved their limbs. One limb was out of sight and the subject ‘concentrated’ on watching a fixation point placed in the middle of the barrier. McCabe et al. propose that when the limbs are doing different things and separated by a mirror or whiteboard, the change in visual feedback falsely signals incongruence between motor intention and movement.

The results show that when subjects watched the mirror image of one limb while they performed a different movement of the limb behind the mirror, 59% reported symptoms in an open-ended response. Notably, 15% of subjects reported low level pain during this task. Forty-one per cent of subjects reported symptoms when they performed the same movement with both limbs and 5% reported symptoms when visual feedback was removed with the whiteboard, regardless of whether the limbs performed the same or different movements. Those results are intriguing. They support the anecdotal reports in the literature [10–12] and corroborate other reports of anomalous sensations associated with discordant sensory input, for example feeling a fake rubber hand [13]. The results support the possibility that sensory–motor discordance may evoke pain in otherwise asymptomatic people. This is important because until now anecdotal reports of an amputated, paralysed or dysfunctional hand ‘coming alive’, purportedly because the incongruence between motor intent and movement has been reconciled, have underpinned the use of mirror therapy in rehabilitation for conditions including stroke [14], phantom limb pain [12] and complex regional pain syndrome type 1 (CRPS1) [11, 15, 16]. At a superficial level, the results of this study support both Harris’ hypothesis and the use of mirror therapy in rehabilitation. However, some caveats on the results and their interpretation should be considered.

Methodological issues make it difficult to exclude alternative explanations for the findings. For example, it is hard to remove bias in a study such as this. Subjects were related to patients, who may have been using mirror therapy; they were told that they may experience transient sensory changes, and they were asked how the tasks made their limbs feel. It is also difficult to exclude the possibility that some people experience or report symptoms in the limb simply by concentrating on it or being asked about it. Similarly, perhaps a perceived change in the limb could be evoked in some subjects just by moving it or holding it in one position. Indeed, this might be expected given the altered proprioceptive input that occurs during a sustained contraction [17]. Including a control condition, in which they simply concentrated on the limb, or a condition in which subjects just performed movements, and a condition in which subjects looked at a fixation point without the limb shielded from view, may help expose the underlying mechanisms. Perhaps also, categorization on the basis of reported symptoms may reflect variability in symptom reporting behaviour [18], or somatic awareness [19], rather than vulnerability to sensory–motor discordance. The results may also have been strengthened by increasing the duration of movements. Whereas habituation of symptoms with extended exposure would not be consistent with the hypothesis, non-habituation, or an increase in symptoms, would be consistent with it. It is notable that when healthy subjects wear prism glasses in which visual information is flipped, initial peculiar feelings subside and functional adaptation occurs quickly [20]. The time course of the sensations in the McCabe study was not described in detail, yet in order to support a specific theory involving cortical efference copies (or corollary motor discharges) in symptom generation, establishing that there was a close temporal relationship between apparent incongruence and symptoms would be critical. Finally, although primarily a qualitative study, it may have been helpful to undertake some statistical analyses, perhaps to provide an estimation of the confidence intervals regarding each class of symptom, and the presence or otherwise of systematic effects between conditions.

Several aspects of the results appear consistent with the proposed model of pain. For example, there were no other likely causes of symptoms because subjects were asymptomatic healthy volunteers; symptoms were most often reported in the condition in which discordance between motor intent and sensory feedback about the movement was greatest; symptoms faded quickly when the mirror or whiteboard, and hence the discordance, was removed. However, several aspects of the results are less consistent. About 40% of subjects reported symptoms when they performed identical movements of both limbs. Presumably there is little discordance between motor intent and perceived movement in this situation. Alternatively, small variations in movement between the limbs may be sufficiently discordant to evoke symptoms in some healthy subjects, as the hypothesis would suggest. If so, this would contradict the proposal that such a task imparts pain relief or motor recovery in patients by removing that same discordance [11, 12, 14].

That changes in the cortical processing of proprioceptive signals cause the discordance and consequently the pain also remains to be established. It is likely that cortical reorganization occurs with chronic pain and that recovery is associated with normalized organization [21–23]. However, perhaps the pain causes the reorganization. Two findings in the literature support that possibility. First, in a magnetoencephalography study, Soros et al. [24] reported that pain induced in the hand via injection of capsaicin caused a decrease in the distance between the centre of gravity of the hand representation and the lip, and a decrease in the distance between the thumb and the fifth finger, both changes similar to those reported for patients with chronic pain. This group has also reported that acute hand pain can elicit phantom hand sensations in response to tactile input at the lip [25], a finding consistent with pain-induced hyper-responsiveness of the cortical hand representation to somatotopical adjacent input from the lip (see also Gandevia and Phegan [26]). Second, Birbaumer et al. [27] reported that regional anaesthesia of the stump in upper limb amputees with phantom pain rapidly eliminates pain and partially reverses the decrease in distance between the hand and lip representations in the primary somatosensory cortex.

Perhaps there is no causative relationship between cortical changes and pain and both are epiphenomena. Certainly both can be observed independent of the other—for example reorganization of the cortical representation of the index finger in Braille readers [28] is not associated with pain. Also, patients with CRPS1 and non-CRPS1 musculoskeletal pain show opposite changes in cortical representation [22, 29], yet both groups report pain. Considering that different pain states involve activation of different cortical networks [30], it is not surprising that the relationship between pain and cortical organization seems to be both variable and complex.

Some caution is also required when implicating particular cortical areas in the proposed production of sensations via sensory–motor discordance. For example, while the right dorsolateral pre-frontal cortex shows activity during sensory–motor conflict evoked by mirror movements [31], activity has also been observed during inhibition of action [32], imagined and executed movements [33, 34], pain [35] and itch [36]. It is likely that dorsolateral pre-frontal cortex is involved in executive/selection functions and in the monitoring of conflict between predicted and actual inputs, as are other areas such as the anterior cingulate cortex [37]. However, those cortical areas also contribute to many other functions.

The model advocated by McCabe et al. may apply to some pain states, but discordance between motor intent and movement seems insufficient alone to cause pain. This is supported by observations in conditions such as focal dystonia in which there can be marked changes in cortical proprioceptive representations [38], yet pain is not a clinical feature of the disorder. The point is evidenced experimentally by wearing prism glasses and more intriguingly via illusions in which body parts are falsely perceived to undergo substantial and sometimes impossible changes [39, 40]. Neither situation evokes pain.

Although the findings of McCabe et al. can be explained by a cortical model of pain the emphasis of which is on the motor control system, it is difficult to isolate the mechanisms to the cortex. It is also difficult to isolate the effects to the motor control system—perhaps the symptoms reported in their study reflect discordance between visual and peripheral sensory inputs. That possibility would also apply to motion sickness in which there is thought to be discordance between vestibular and non-vestibular input [41].

Caveats aside, the study by McCabe et al. raises important issues for the investigation of pain. Future experiments may build on the innovative approach taken by them to investigate the effects they describe in more detail. We have suggested several possible modifications that may be helpful.


  1. McCabe CS, Haigh RC, Halligan PW, Blake DR. Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology 2005;44:509–16.
  2. Harris AJ. Cortical origin of pathological pain. Lancet 1999;354:1464–6.
  3. Von Holst H. Relations between the central nervous system and the peripheral organs. Br J Anim Behav 1950;2:89–94.
  4. Sperry R. Neural basis of the spontaneous optokinetic responses produced by visual neural inversion. J Comp Physiol Psychol 1950;43:482–9.
  5. Gandevia S. Kinesthesia: roles for afferent signals and motor commands. In: Rothwell L, Shepherd J, eds. Handbook of physiology, section 12, Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996:128–72.
  6. Blyth FM, March LM, Brnabic AJ, Jorm LR, Williamson M, Cousins MJ. Chronic pain in Australia: a prevalence study. Pain 2001;89:127–34.
  7. Eriksen J, Jensen MK, Sjogren P, Ekholm O, Rasmussen NK. Epidemiology of chronic non-malignant pain in Denmark. Pain 2003;106:221–8.
  8. Portenoy RK, Ugarte C, Fuller I, Haas G. Population-based survey of pain in the United States: differences among White, African American, and Hispanic subjects. J Pain 2004;5:317–28.
  9. McQuay HJ, Moore RA, Eccleston C, Morley S, Williams AC. Systematic review of outpatient services for chronic pain control. Health Technol Assess 1997;1:i–iv, 1–135.
  10. Moseley GL. Cortical issues with rehabilitation and learning. Proceedings of the 8th International Congress of the Australian Physiotherapy Association. Adelaide, 2004.
  11. McCabe CS, Haigh RC, Ring EF, Halligan PW, Wall PD, Blake DR. A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1). Rheumatology 2003;42:97–101.
  12. Ramachandran VS, Rogers-Ramachandran D. Phantom limbs and neural plasticity. Arch Neurol 2000;57:317–20.
  13. Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature 1998;391:756.
  14. Altschuler E, Wisdom S, Stone L et al. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 1999;353:2035–6.
  15. Moseley GL. Graded motor imagery is effective for long-standing complex regional pain syndrome. Pain 2004;108:192–8.
  16. Moseley GL. Is successful rehabilitation of complex regional pain syndrome simply sustained attention to the affected limb? A randomised clinical trial. Pain 2005;114:54–61.
  17. Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D. Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol 1991;440:497–512.
  18. Ferguson RJ, Ahles TA. Private body consciousness, anxiety and pain symptom reports of chronic pain patients. Behav Res Ther 1998;36:527–35.
  19. Eccleston C, Crombez G, Aldrich S, Stannard C. Attention and somatic awareness in chronic pain. Pain 1997;72:209–15.
  20. Sekiyama K, Miyauchi S, Imaruoka T, Egusa H, Tashiro T. Body image as a visuomotor transformation device revealed in adaptation to reversed vision. Nature 2000;407:374–7.
  21. Maihofner C, Handwerker HO, Neundorfer B, Birklein F. Cortical reorganization during recovery from complex regional pain syndrome. Neurology 2004;63:693–701.]
  22. Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 1997;224:5–8.
  23. Flor H, Denke C, Schaefer M, Grusser S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 2001;357:1763–4.
  24. Soros P, Knecht S, Bantel C et al. Functional reorganization of the human primary somatosensory cortex after acute pain demonstrated by magnetoencephalography. Neurosci Lett 2001;298:195–8.
  25. Knecht S, Soros P, Gurtler S, Imai T, Ringelstein EB, Henningsen H. Phantom sensations following acute pain. Pain 1998;77:209–13.
  26. Gandevia S, Phegan C. Perceptual distortions of the human body image produced by local anaesthesia, pain and cutaneous stimulation. J Physiol 1999;514:609–16.
  27. Birbaumer N, Lutzenberger W, Montoya P et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 1997;17:5503–8.
  28. Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E. Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosci 1998;18:4417–23.
  29. Maihofner C, Handwerker HO, Neundorfer B, Birklein F. Patterns of cortical reorganization in complex regional pain syndrome. Neurology 2003;61:1707–15.
  30. Apkarian AV. Functional magnetic resonance imaging of pain consciousness: cortical networks of pain critically depend on what is implied by “pain”. Curr Rev Pain 1999;3:308–15.
  31. Fink GR, Marshall JC, Halligan PW et al. The neural consequences of conflict between intention and the senses. Brain 1999;122:497–512.
  32. Band GP, van Boxtel GJ. Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychol 1999;101:179–211.
  33. Lotze M, Montoya P, Erb M et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci 1999;11:491–501.
  34. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 2000;123:1216–28.
  35. Derbyshire SW, Jones AK, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 1997;73:431–45.
  36. Drzezga A, Darsow U, Treede R et al. Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H(2)O positron emission tomography studies. Pain 2001;92:295–305.
  37. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999;402:179–81.
  38. Elbert T, Candia V, Altenmuller E et al. Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport 1998;9:3571–5.
  39. Craske B. Perception of impossible limb positions induced by tendon vibration. Science 1977;196:71–3.]
  40. Gandevia SC. Illusory movements produced by electrical-stimulation of low-threshold muscle afferents from the hand. Brain 1985;108:965–81.
  41. Yates BJ, Miller AD, Lucot JB. Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 1998;47:395–406.

See article at Rheumatology 44 1083-1085

Letter to the Editor -Reply

Re: Sensory-motor incongruence and reports of ‘pain’, by GL Moseley and SC Gandevia. Rheumatology 2005;44:1083–1085

CS McCabe (a), RC Haigh (b), PW Halligan (c) and DR Blake (a)
(a) The Royal National Hospital for Rheumatic Diseases in conjunction with The School for Health and The Department of Pharmacy and Pharmacology, University of Bath, Bath
(b) Royal Devon and Exeter Hospital (Wonford), Exeter and
(c) School of Psychology, University of Cardiff, Cardiff, UK

Candy McCabe and her colleagues responded to our Editorial, which we are not permitted to reproduce fully here due to copyright but please go and have a look at it (you can get the full free text).  We could summarise it for you, but that wouldn’t really give them a fair go – so, please go and have a look at their reply, then come back.  Go on, do it….. Rheumatology 45 644-645

Letter to the Editor -Reply

Re: Sensory-motor incongruence and reports of ‘pain’, by GL Moseley and SC Gandevia. Rheumatology 2005;44:1083–1085

GL Moseley (a) and SC Gandevia (b)
(a) School of Physiotherapy, The University of Sydney
(b) Prince of Wales Medical Research Institute and University of New South Wales, Sydney, Australia

SIR, Thanks for the opportunity to comment on McCabe et al.’s response to our Editorial [1] concerning their earlier paper in Rheumatology [2]. Our position was primarily one of caution that alternative explanations for both the results and the mechanisms underpinning them should not be excluded. Some of our concerns, for example selection bias, were allayed, but some remain. For example, while we appreciate that abnormal sensations stopped immediately when normal visual input was restored and that this suggests a direct relationship between the experimental condition and the abnormal sensations, the cogency of this finding would be strengthened if the onset of abnormal sensation occurred immediately too. Our contention that further work is required to determine how the experimental condition was related to the abnormal sensations still stands.

We agree, and it is well established, that many factors from across domains may impact on motor commands and their efference copies [3], and that changes in cortical reorganization (that is, the response profile of S1 neurons) cannot be solely responsible for pain. Furthermore, while S1 holds maps of the superficial and deep surfaces of the body, the understanding of the relationships between cutaneous afferent activity, proprioception and motor control is not well developed [4].

In summary, it is possible that mirror use in healthy volunteers is sufficiently incongruent to evoke abnormal sensations yet the same mirror use in patients is sufficiently congruent to alleviate these sensations. However, it seems critical to acknowledge that on the basis of current data this hypothesis can neither be accepted nor refuted.


  1. Moseley GL, Gandevia SC. Sensory motor incongruence and reports of ‘pain’. Rheumatology 2005;44:1083–5.[Free Full Text]
  2. McCabe CS, Haigh RC, Halligan PW, Blake DR. Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology 2005;44:509–16.
  3. Von Holst H. Relations between the central nervous system and the peripheral organs. Br J Anim Behav 1950;2:89–94.
  4. Collins DF, Refshauge KM, Todd G, Gandevia SC. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. J Neurophysiol 2005;94:1699–706.

See full article at Rheumatology 45 645